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Thirty years after the first observation of halide encapsulation
by katapinand receptors,1,2 we have utilized19F NMR spectroscopy
in conjunction with X-ray crystallography to provide snapshots
of fluoride binding in an aza cryptand,1, over a range of pH
values. The results provide definitive solution and solid-state
evidence for the incorporation of fluoride in the cavity. This is,
to our knowledge, the first study that integrates crystallographic
findings with 19F NMR data as a means of understanding the
binding patterns of fluoride as a function of pH.

Anion recognition and binding is an exciting and growing field
in receptor chemistry.3,4 Fluoride, being the smallest halide, has
unique properties compared to its congeners as a result of its
relative size and electronegativity. It is also an ion of prominence
in health and environmental circles, for example, in the fluorida-
tion of water5,6 and in groundwater contamination emanating from
certain industrial plants.7 Hence, an understanding of the binding
of fluoride to receptor species is of value for a variety of
applications. While receptors for fluoride have been reported,8-23

19F NMR has been sparingly used,19-22 especially as a structural
tool to probe solution structure over a range of pH values, for
which no reports have appeared.

The ligand was synthesized according to published proce-
dures.24 At room temperature and 4°C in water broad signals
indicative of exchange processes on the NMR time scale were
observed. Hence, a water-DMSO solution at-25 °C25 was
examined. At pH 2,26,27 the major signal appears at-122 ppm
with minor signals at-140 and-147 ppm (Figure 1). (The
chemical shift for HF in the absence of macrocycle lies at-157
ppm, and a very small signal is seen in this region.) At this pH
HF species should predominate, so we have tentatively assigned
these signals as either HF (pKa(H2O) ) 3.15, pKa(DMSO)) 1528)
or FHF- interacting with highly protonated forms of the macro-
cycle. The disappearance of both signals above pH 4.5 supports
the assignment as HF-derived species. From pH 3.5 to 4.5 a
structural transition is clearly occurring with the appearance of
two new broad resonances at-95 and-110 ppm, which sharpen
and shift to-88 and-99 ppm by pH 5. These two signals are
assigned to internally bound fluoride, based on similar assignments
by other researchers,19,22 but in different environments. As the
pH is increased, the signal at-99 ppm broadens and shifts upfield
until it disappears completely at pH 6.5. However, the signal at
-89 ppm remains virtually unshifted and is the major signal as
high as pH 7.5. The persistence of this signal is an extremely
exciting finding, indicating that these aza cryptands are capable
of significant internal binding even at neutral pH values. At pH
7, a signal begins to appear at-115 ppm while the signal at
-89 ppm diminishes. The new resonance shifts and sharpens to
a final signal at-117 ppm, which correlates well with that found
for solvated fluoride in a water/DMSO mixture in the absence of
macrocycle.

The crystal structure supports the19F solution studies, and the
assignment of the internal fluoride. In fact, both a fluoride ion
and a molecule of water inhabit the cavity in this solid-state
snapshot (Figure 2).29,30 This structural finding differs from that
of a related receptor, bis-tren, in which a single fluoride resides
on one side of the cavity.8 The structure of the entire assembly
was found to be more complex than anticipated and includes the
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2-‚F-‚2FHF-‚7H2O: C 41.52, H 7.36, N 10.76. Found: C 41.85, H
7.47, N 10.77.
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macrocycle with its inhabitants, 1.5 SiF6
2- anions (one dianion

sits on the crystallographically imposed inversion center), two
bifluorides (F-H‚‚‚F-), and six water molecules. An unanticipated
occurrence of SiF62- has been observed previously.31 The
encapsulated fluoride and water molecule were found to be shifted
from the “central axis” between the two apical nitrogens of the
macrocycle as seen in the view down the pseudo-3-fold axis
(Figure 2B). The internal fluoride, F(1), exhibits pseudotetrahedral
coordination via hydrogen bonds with three ammonium hydrogen
atoms as well as with one hydrogen belonging to the internal
water molecule. Although crystallographic evidence for the
incorporation of two nitrates within this macrocycle has been
obtained,32 this is the first report of two different guests
encapsulated within one of these simple Schiff base-derived
receptors.

In conclusion, this study clearly shows the utility of combining
19F NMR with crystallographic findings to obtain valuable

information on recognition patterns over a range of pH values. It
also confirms the ability of these cryptands to encapsulate anions
over a significant pH range, in addition to providing solid-state
evidence of the unusual occurrence of an anion and a neutral guest
within a single bicyclic host. We are currently investigating the
mechanisms of binding, selectivity aspects, and several different
applications with respect to anion recognition in related systems.
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Figure 1. 19F spectra as a function of pH using a 1:1 NaF:ligand ratio
(0.01 M in each and 0.1 M in KTs) in a DMSO:H2O (40:60 v/v) solution.

Figure 2. (A) Crystal view of1 from the side, showing the fluoride and
water molecule inside the cavity. (B) Crystal view of1 as viewed down
the “3-fold” axis.

Communications to the Editor J. Am. Chem. Soc., Vol. 122, No. 8, 20001815


